کافی نت زیپ

کافی نت زیپ

کافی نت زیپ
کافی نت زیپ

کافی نت زیپ

کافی نت زیپ

تحقیق در مورد اتم

اتم

یک اتم ، کوچکترین جزء اصلی غیر قابل تقلیل یک سیستم شیمیایی می‌باشد  .

ریشه لغوی

این کلمه ، از کلمه یونانی atomos ، غیر قابل تقسیم ، که از a- ، بمعنی غیر و tomos، بمعنی برش ، ساخته شده است. معمولا به معنای اتم‌های شیمیایی یعنی اساسی‌ترین اجزاء مولکول‌ها و مواد ساده می‌باشد

تاریخچه شناسایی اتم

مواد متنوعی که روزانه در آزمایش و تجربه با آن روبه رو هستیم، متشکل از اتم‌های گسسته است. وجود چنین ذراتی برای اولین بار توسط فیلسوفان یونانی مانند دموکریتوس (Democritus) ، لئوسیپوس (Leucippus) و اپیکورینز (Epicureanism) ولی بدون ارائه یک راه حل واقعی برای اثبات آن ، پیشنهاد شد. سپس این مفهوم مسکوت ماند تا زمانیکه در قرن 18 راجر بسکوویچ (Rudjer Boscovich) آنرا احیاء نمود و بعد از آن توسط جان دالتون (John Dalton) در شیمی بکار برده شد.


راجر بوسویچ نظریه خود را بر مبنای مکانیک نیوتنی قرارداد و آنرا در سال 1758 تحت عنوان:

Theoria philosophiae naturalis redacta ad unicam legem virium in natura existentium


چاپ نمود.

img/daneshnameh_up/0/07/Layehaye_electroni.jpg

 

 

 

 

 



 

 

 

 

 

 

براساس نظریه بوسویچ ، اتمها نقاط بی‌اسکلتی هستند که بسته به فاصله آنها از یکدیگر ، نیروهای جذب کننده و دفع کننده بر یکدیگر وارد می‌کنند. جان دالتون از نظریه اتمی برای توضیح چگونگی ترکیب گازها در نسبتهای ساده ، استفاده نمود. در اثر تلاش آمندو آواگادرو (Amendo Avogadro) در قرن 19، دانشمندان توانستند تفاوت میان اتم‌ها و مولکول‌ها را درک نمایند. در عصر مدرن ، اتم‌ها ، بصورت تجربی مشاهده شدند.

اندازه اتم

اتم‌ها ، از طرق ساده ، قابل تفکیک نیستند، اما باور امروزه بر این است که اتم از ذرات کوچکتری تشکیل شده است. قطر یک اتم ، معمولا میان 10pm تا 100pm متفاوت است.

ذرات درونی اتم

در آزمایش‌ها مشخص گردید که اتم‌ها نیز خود از ذرات کوچکتری ساخته شده‌اند. در مرکز یک هسته کوچک مرکزی مثبت متشکل از ذرات هسته‌ای ( پروتون‌ها و نوترون‌ها ) و بقیه اتم فقط از پوسته‌های متموج الکترون تشکیل شده است. معمولا اتم‌های با تعداد مساوی الکترون و پروتون ، از نظر الکتریکی خنثی هستند.

طبقه‌بندی اتم‌ها

اتم‌ها عموما برحسب عدد اتمی که متناسب با تعداد پروتون‌های آن اتم می‌باشد، طبقه‌بندی می‌شوند. برای مثال ، اتم های کربن اتم‌هایی هستند که دارای شش پروتون می‌باشند. تمام اتم‌های با عدد اتمی مشابه ، دارای خصوصیات فیزیکی متنوع یکسان بوده و واکنش شیمیایی یکسان از خود نشان می‌دهند. انواع گوناگون اتم‌ها در جدول تناوبی لیست شده‌اند.


اتم‌های دارای عدد اتمی یکسان اما با جرم اتمی متفاوت (بعلت تعداد متفاوت نوترون‌های آنها) ، ایزوتوپ نامیده می‌شوند.

ساده‌ترین اتم

ساده‌ترین اتم ، اتم هیدروژن است که عدد اتمی یک دارد و دارای یک پروتون و یک الکترون می‌باشد. این اتم در بررسی موضوعات علمی ، خصوصا در اوایل شکل‌گیری نظریه کوانتوم ، بسیار مورد علاقه بوده است.

واکنش شیمیایی اتم‌ها

واکنش شیمیایی اتم‌ها بطور عمده‌ای وابسته به اثرات متقابل میان الکترون‌های آن می‌باشد. خصوصا الکترون‌هایی که در خارجی‌ترین لایه اتمی قرار دارند، به نام الکترون‌های ظرفیتی ، بیشترین اثر را در واکنش‌های شیمیایی نشان می‌دهند. الکترون‌های مرکزی (یعنی آنهایی که در لایه خارجی نیستند) نیز موثر می‌باشند، ولی بعلت وجود بار مثبت هسته اتمی ، نقش ثانوی دارند.

img/daneshnameh_up/2/2b/atom3.gif

 

 

 

 

 

پیوند میان اتم‌ها

اتم‌ها تمایل زیادی به تکمیل لایه الکترونی خارجی خود و (یا تخلیه کامل آن) دارند. لایه خارجی هیدروژن و هلیم جای دو الکترون و در همه اتمهای دیگر طرفیت هشت الکترون را دارند. این عمل با استفاده مشترک از الکترونهای اتم‌های مجاور و یا با جدا کردن کامل الکترون‌ها از اتمهای دیگر فراهم می‌شود. هنگامیکه الکترونها در مشارکت اتمها قرار می گیرند، یک پیوند کووالانسی میان دو اتم تشکیل می‌گردد. پیوندهای کووالانسی قویترین نوع پیوندهای اتمی می‌باشند.

یون

هنگامیکه بوسیله اتم ، یک یا چند الکترون از یک اتم دیگر جدا می‌گردد، یون‌ها ایجاد می‌شوند. یون‌ها اتم‌هایی هستند که بعلت عدم تساوی تعداد پروتو ن‌ها و الکترون‌ها ، دارای بار الکتریکی ویژه می‌شوند. یون‌هایی که الکترون‌ها را برمی‌دارند، آنیون (anion) نامیده شده و بار منفی دارند. اتمی که الکترون‌ها را از دست می‌دهد کاتیون (cation) نامیده شده و بار مثبت دارد.

پیوند یونی

کاتیون‌ها و آنیون‌ها بعلت نیروی کولمبیک (coulombic) میان بارهای مثبت و منفی ، یکدیگر را جذب می‌نمایند. این جذب پیوند یونی نامیده می‌شود و از پیوند کووالانسی ضعیفتر است.

مرز مابین انواع پیوندها

همانطور که بیان گردید، پیوند کوالانسی در حالتی ایجاد میشود که در آن الکترون‌ها بطور یکسان میان اتمها به اشتراک گذارده می‌شوند، درحالیکه پیوند یونی در حالی ایجاد می‌گردد که الکترون‌ها کاملا در انحصار آنیون قرار می‌گیرند. بجز در موارد محدودی از حالتهای خیلی نادر ، هیچکدام از این توصیف‌ها کاملا دقیق نیست. در بیشتر موارد پیوندهای کووالانسی ، الکترون‌ها بطور نامساوی به اشتراک گذارده میشوند، بطوریکه زمان بیشتری را صرف گردش بدور اتم‌های با بار الکتریکی منفی‌تر می‌کنند که منجر به ایجاد پیوند کووالانسی با بعضی از خواص یونی می‌گردد.

بطور مشابهی ، در پیوندهای یونی ، الکترون‌ها اغلب در مقاطع کوچکی از زمان بدور اتم با بار الکتریکی مثبت‌تر می‌چرخند که باعث ایجاد بعضی از خواص کووالانسی در پیوند یونی می‌گردد .

 

اتم اولیه

ریشه لغوی و تاریخچه

کلمه اتم از واژه یونانی Atomos به معنی (تقسیم‌نا‌پذیر) گرفته شده ‌است. اعتبار نخستین نظریه اتمی را بطور معمول از یونانیان باستان می‌دانند اما ممکن است خاستگاه این مفهوم در تمدنهای پیش از یونان باشد. نظریه اتمی (لوسیپوس) و (موکرتیس) که در قرن پنجم قبل از میلاد مسیح ‌می‌زیستند مدعی آن است که تقسیم پی‌درپی ماده در نهایت به اتمهایی می‌رسد که امکان تقسیم بیشتر ندارند.

ارسطو در قرن چهارم قبل از میلاد مسیح نظریه اتمی را نپذیرفت. او باور داشت که بطور فرضی ماده بی‌پایان به ذرات کوچک و کوچکتر تقسیم می‌شود. این نظریه دو هزار سال بصورت اندیشه محض باقی ماند. رابرت بویل در سال 1661 و ایزاک نیوتون در سال 1687 وجود اتمها را پذیرفتند.

img/daneshnameh_up/b/b5/fffatom.gif

 

 

 

 

 

 

نظریه اتمی دالتون

جان دالتون نظریه اتمی را بگونه‌ای طرح کرد که شاخص برجسته‌ای در تاریخ شیمی شد. این نظریه در سالهای 1803 تا 1808 نصج گرفت. در آن زمان دانشمندان بسیاری معتقد بودند که ماده از اتم‌ها ترکیب یافته است اما دالتون از این هم پیش رفت. او طرحی برای نظریه اتمی بوجود آورد که می‌توانست قوانین تغییر شیمیایی را توضیح دهد و با نسبت دادن جرمهای نسبی به اتمهای عناصر گوناگون به مفهوم نظریه اتمی صورت کمی داد.

اصول موضوع نظریه دالتون

1.   عناصر از ذرات بی‌نهایت کوچکی که اتم نامیده می‌شوند ترکیب یافته‌اند. تمام اتمهای یک عنصر یکسان و اتمهای عناصر گوناگون متفاوت‌اند.

2.   در واکنشهای شیمیایی اتمها از هم جدا می‌شوند و به هم می‌پیوندند. در این واکنش هیچ اتمی ایجاد نمی‌شود یا از میان نمی‌رود و هیچ اتمی از یک عنصر به عنصر دیگر تبدیل نمی‌شود.

3.   یک ماده مرکب شیمیایی حاصل ترکیب اتمهای دو یا چند عنصر است. یک ماده مرکب معین از اتمهایی ترکیب یافته است که همواره نوع و نسبت آنها ثابت است.

تغییرات در نظریه اتمی دالتون

نظریه دالتون به مفهوم کلی آن امروزه نیز معتبر است. لیکن اصل اول آن تغییر یافته است. دالتون می‌گفت که تمام اتمهای یک عنصر معین ، جرم اتمی یکسان دارند. امروزه ما می‌دانیم که تمام اتمهای یک عنصر از لحاظ شیمیایی به هم شبیه و اتمهای یک عنصر با اتمهای عنصر دیگر تفاوت دارند. علاوه بر این ما می‌توانیم یک جرم متوسط برای اتمهای هر عنصر در نظر بگیریم. در بسیاری از محاسبات اگر عنصر را از یک نوع اتم با جرم متوسط بدانیم اشتباهی بوجود نمی‌آید.

منشا نظریه اتمی دالتون

دالتون وجوه کمی نظریه خود را از درون دو قانون مربوط به تغییرات شیمیایی بیرون کشید:

1.   قانون پایستاری جرم می‌گوید که در جریان یک واکنش شیمیایی جرم تغییر محسوسی نمی‌کند. اصل دوم نظریه دالتون این قانون را توضیح می‌دهد.

2.   قانون نسبتهای معین می‌گوید که یک ماده مرکب خالص همواره شامل عناصر معینی است که با نسبت جرمی معین ترکیب می‌شوند. اصل سوم نظریه دالتون این قانون را توضیح می‌دهد.

الکترون

در نظریه دالتون و نظریه‌های یونانیان اتمها کوچکترین اجزای ممکن ماده بودند اما در اواخر سده نوزدهم کم کم معلوم شد که اتم خود از ذراتی کوچکتر ترکیب یافته است. این تغییر دیدگاه نتیجه آزمایشهایی بود که با الکتریسیته بعمل آمد. در سال 1807 و 1808 شیمیدان انگلیسی همفری دیوی با تجزیه مواد مرکب توسط الکتریسیته پنج عنصر پتاسیم ، سدیم ، کلسیم ، استرونسیم و باریم را کشف کرد. دیوی با این کار به این نتیجه رسید که عناصر با جاذبه‌هایی که ماهیتا الکتریکی هستند به هم متصل می‌شوند.

در سال 1832 و 1833 مایکل فارادی مجموعه آزمایشهای مهمی در زمینه برقکافت شیمیایی انجام داد. در فرایند برقکافت مواد مرکب بوسیله الکتریسیته تجزیه می‌شوند. فارادی رابطه بین مقدار الکتریسیته مصرف شده و مقدار ماده مرکب تجزیه شده را برسی کرد و فرمول قوانین برقکافت شیمیایی را بدست آورد. بر مبنای کار فارادی جرج جانسون استونی در سال 1874 به طرح این مطلب پرداخت که واحدهای باردار الکتریکی با اتم‌ها پیوستگی دارند. او در سال 1891 این واحدهای الکتریکی را الکترون نامید.

الکترونها در میدان مغناطیسی و الکتریکی منحرف می‌شوند. بعدها مقدار بار الکترون در سال 1909توسط رابرت . ا . میلیکان محاسبه شد. الکترون یک واحد بار منفی یعنی b0dce98b1db43dfcc246bf2db4159813دارد. جرم الکترون نیز از رابطه q به q/m محاسبه شد و مقدار c3cb3700184e69dff789eb15177e94aeبدست آمد.

پروتون

هرگاه یک یا چند الکترون از یک اتم یا مولکول خنثی جدا شوند باقیمانده ، بار مثبتی برابر با مجموع بارهای منفی الکترونهای جدا شده دارد. اگر یک الکترون از یک اتم نئون ( نماد ، Ne ) جدا شود نتیجه یک یون 9d8dc9c99371ba520efe5f7eb504bbf0و اگر دو الکترون جدا شود یک یون acc21ec2930f1468eab19ce8ac68d4e0بدست می‌آید و الی آخر. این نوع ذرات مثبت ( یونهای مثبت ) وقتی در لوله تخلیه الکتریکی تولید می‌شوند که پرتوهای کاتدی از اتمها یا مولکولهای موجود در لوله الکترون جدا کنند.

این یونهای مثبت به طرف الکترود منفی حرکت می‌کنند اما الکترونهای پرتوهای کاتدی چون بار منفی دارند در جهت مخالف (بطرف الکترود مثبت) حرکت می‌کنند. این جریان یونهای مثبت که پرتوهای مثبت نامیده می‌شوند، نخستین بار توسط یوجین گلدشتاین در سال 1886 مشاهده شدند. این ذرات مثبت پروتون نامیده می‌شوند و جز تشکیل دهنده تمام اتمها هستند. پرتون یک واحد بار مثبت دارد و علامت آن مثبت است. f55cfeb9618a016816b6b17ef3a8e479جرم پروتون نیز از رابطه q بر q/m محاسبه شد. 2a2476aa100bc7a23ff0e8d230c0791c

نوترون

چون اتمها از نظر الکتریکی خنثی هستند تعداد الکترونها و پروتونها در هر اتم باید برابر باشد. برای توجیه جرم کل اتمها ارنست رادرفورد در سال 1920 وجود ذراتی بدون بار را در هسته اتم مسلم دانست. چون این ذرات بدون بارند تشخیص و تعیین خواص آنها مشکل است ولی در سال 1932 جیمز چادویک نتیجه کارهای خود را درباره اثبات وجود این ذرات که نوترون نامیده می‌شوند منتشر کرد. او توانست با استفاده از داده‌های بدست آمده از بعضی واکنشهای هسته‌ای مولود نوترون جرم آن را محاسبه کند. چادویک با در نظر گرفتن جرم و انرژی تمام ذراتی که در این واکنشها مصرف و تولید می‌شوند جرم نوترون را که اندکی از جرم پروتون بیشتر است محاسبه کرد. جرم نوترون 2acb63e8fe3affd7447b79332f2c2489و جرم پروتون 2a2476aa100bc7a23ff0e8d230c0791cاست.

هسته اتم

پرتوزایی طبیعی

بعضی از اتم‌ها مجموعه ناپایداری از ذرات بنیادی هستند. این اتم‌ها خود بخود پرتوهایی گسیل می‌دارند و به اتمهای دیگر با هویت شیمیایی متفاوت تبدیل می‌شوند. این فرایند که پرتوزایی نامیده می‌شود که در سال 1896 بوسیله هانری بکرل کشف شد. در سالهای بعد ارنست رادرفورد ماهیت سه نوع پرتو گسیل یافته از مواد پرتوزای موجود در طبیعت را توضیح داد. این سه نوع پرتو با سه حرف نخستین الفبای یونانی آلفا (α) ، بتا (β) و گاما (γ) مشخص می‌شوند.

  • تابش آلفا مرکب از ذراتی است که بار +2 و جرمی تقریبا برابر پروتون دارند. این ذرات آلفا با سرعتی حدود km/s 16000 از ماده پرتوزا بیرون می‌جهند. نخستین بار که ذرات α مورد مطالعه قرار گرفتند نوترون هنوز کشف نشده بود. امروزه ما می‌دانیم که ذره آلفا مرکب از دو پروتون و دو نوترون است.
  • تابش بتا مرکب از جریانی از الکترونهاست که تقریبا با سرعت km/s 130000 سیر می‌کنند.
  • تابش گاما اصولا صورتی از نور با انرژی بسیار زیاد است. پرتوهای گاما بدون بار و شبیه پرتوهای ایکس‌اند.

مدل اتمی رادرفورد

رادرفورد در سال 1911 نتایجی از آزمایشهای خود را که در آنها از ذرات آلفا برای پژوهش در ساختار اتم استفاده شده بود منتشر کرد. آزمایش از این قرار بود که باریکه‌ای از ذرات α به ورقه بسیار باریکی به ضخامت cm 0.0004 از طلا ، نقره یا مس تابانده شد. اکثر ذرات α بطور مستقیم از ورقه بیرون رفتند ولی بعضی از آنها از مسیر مستقیم منحرف شده و معدودی بطرف منبع خود بازگشتند. رادرفورد نتایج این آزمایشها را با طرح این فرض که هر اتم مرکب از دو بخش است توضیح داد:

  • یک هسته در مرکز اتم وجود دارد. بیشترین جرم و تمام بار مثبت اتم در هسته متمرکز است. اکنون باور ما این است که هسته شامل پروتونها و نوترونهایی است که بر روی هم جرم هسته را در بر دارند و بار هسته ناشی از پروتونهای هسته است.
  • الکترونها که بیشترین حجم اتم را اشغال می‌کنند خارج هسته هستند و به سرعت دور هسته حرکت می‌کنند. چون یک اتم از لحاظ الکتریکی خنثی است بار مثبت کل هسته (که ناشی از پروتونهای آن است) برابر بار منفی همه الکترونهای اتم است. بنابراین عده الکترونها با عده پروتونها برابر است .

مدل بوهر

پذیرفتن مدل اتمی رادرفورد این سوال برای دانشمندان پیش آمد ، که طیف نشری خطی اتم عناصر ، حاصل از چیست ؟

img/daneshnameh_up/d/d7/ch15_orbits1downfa.GIF

img/daneshnameh_up/9/9e/ch15_orbits2downfa.GIF



 

 

 

 

در این هنگام نیلس بور با پذیرفتن مدل اتمی رادرفورد چنین پیشنهاد داد که الکترون ها در اطراف هسته اتم در سطوح انرژی مشخصی قرار دارند  و در این سطوح به دور هسته اتم در حال چرخیدن هستند . انرژی الکترون هایی که در سطوح انرژی پایین تر به  هسته نزدیک تر هستند ، نسبت به الکترون هایی که از هسته دورند ، انرژی کمتری دارند . پس برای انتقال الکترون از سطح انرژی پایین به سطح انرژی بالا ، باید انرژی معادل اختلاف انرژی بین آن دو سطح ، را به آن الکترون بدهیم . پس انرژی الکترون ها در یک اتم کوانتیده است .

مدل اتمی بور توانست به ما نشان دهد که طیف نشر خطی که از اتم عناصر گسیل می شود ، بر اثر انتقال الکترون ها ازسطوح انرژی بالا به سطوح انرژی پایین است ، که در این انتقال انرژی الکترون کاهش و به صورت نور و گرما آزاد می شود .
که اگر این نور آزاد شده را از منشور عبور دهیم طیف نشری آن مشخص می شود . بور ، بیشتر مدل اتمی خود را بر اساس آزمایش هایی
که با اتم های هیدروژن و هیلیم انجام داده بود مطرح می ساخت به همین دلیل مدل
اتمی او ( که به مدل منظومه شمسی معروف است ) برای اتم های سنگینی مانند اورانیم ، آهن و ... صدق نمی کرد

. در این هنگام مدل اتمی کوانتمی (یا ابر الکترونی ) به همکاری بسیاری از دانشمندان به در عرصه رقابت مطرح شد . از جمله دانشمندانی که در این مدل اتمی سهم چشمگیری داشتند ، هایزنبگ ، پلانک و شرودینگر را می توان نام برد .
البته انیشتین با ارائه فرمول های خود نیز توانست به این مدل اتمی کمک کند .

معادله شرودینگر

نگاه اجمالی

از مکانیک کلاسی می‌دانیم که در بررسی حرکت ذره ابتدا معادله حرکت آن ذره را پیدا می‌کنند و بر اساس آن در مورد چگونگی حرکت بحث می‌کنند. در حالت کلاسیک ، بطور کلی این معادله با استفاده از لاگرانژین مربوط به حرکت ذره حاصل می‌گردد. همچنین می‌دانیم که در مکانیک کوانتومی ‌، بر اساس نظریه دوبروی در مورد ذرات دو دیدگاه موجی و ذره‌ای در نظر گرفته می‌شود و اصل مکملی نور مانع از این می‌شود که این دو تصویر را به صورت همزمان بکار ببریم. ولی برای توصیف کامل حرکت ، هر دو دیدگاه باید در نظر گرفته شوند. بر این اساس معادله‌ای که به حرکت این ذرات کوانتومی‌ حاکم است، معادله شرودینگر نامیده می‌شود.

حرکت ذره آزاد

معمولا ساده‌ترین حالت در مکانیک کوانتومی‌ حرکت یک ذره آزاد است. لفظ آزاد به این لحاظ بکار می‌رود که این ذره تحت تاثیر هیچ پتانسیلی قرار ندارد. در این صورت معادله شرودینگر در مورد حرکت ذره مورد نظر ، با این فرض که حرکت در یک بعد صورت می‌گیرد، به صورت زیر خواهد بود:

61a3fd5960abfdaa3959490d40b0a7db


در رابطه فوق m جرم ذره ، f7ff561741ebcdc5457222d66337d047ثابت پلانک ، 46b7ccbd145a31f04d58ffb0e1f2b872تابع موجی است که در تشریح دیدگاه موجی ، به ذره مورد نظر نسبت داده می‌شود. همچنین i یک واحد موهومی ‌است که مجذور آن برابر (1-) می‌باشد (عدد مختلط). در این رابطه نماد ec49df1bef3c809a99769cee97095a40بیانگر مشتق نسبی نسبت به زمان و 9c4a59a419f2b3dc76b98bc7e8293131نشانگر مشتق نسبی نسبت به مکان است.

 

خصوصیات معادله شرودینگر

·    معادله شرودینگر نسبت به مشتق زمان از مرتبه اول است. این امر ایجاب می‌کند که وقتی مقدار اولیه تابع موج منتسب به ذره ، به عنوان مثال در لحظه t=0 معلوم باشد، مقدار آن را در هر لحظه دیگر نیز بتوان پیدا کرد. این مطلب از شکل این معادله ، یا از شکل عمومی‌ترین جواب این معادله ، که یک رابطه انتگرالی است، مشهود است.

·    نکته دیگر این است که در معادله شرودینگر هیچ عدم قطعیتی وجود ندارد. به بیان دیگر ، همین که حالت اولیه تابع موج مشخص شد، در این صورت در هر زمان دیگری ، آن تابع موج کاملا مشخص می‌گردد. دلیل این مطلب در اینجاست که هیچ محدودیتی بر روی تابع موج حالت اولیه وجود ندارد.

چگالی احتمال

در حالت کلی تابع موج 46b7ccbd145a31f04d58ffb0e1f2b872یک تابع مختلط است و به خودی‌خود هیچ تعبیر فیزیکی ندارد، اما مربع قدرمطلق آن کمیت بسیار بااهمیتی است، که چگالی احتمال نام دارد. چگالی احتمال بیانگر احتمال وجود ذره است و در جایی که فرض می‌شود، ذره در آنجا باشد، مقدار آن بزرگتر است و در هر جای دیگر مقدار آن کوچکتر می‌باشد. چگالی احتمال که با 5ca4aebf87ed9ae190194bd647cd53c4نمایش داده می‌شود، یک تابع حقیقی است و وابستگی زمانی آن بیانگر این مطلب است که با گذشت زمان برای پیدا کردن ذره در جایی که در لحظه اولیه قرار داشته، شانس کمتری وجود دارد.

معادله شرودینگر در حالت کلی

در مطالب قبلی معادله شرودینگر را در حالت ساده ذره آزاد و در مورد حرکت یک بعدی بیان کردیم. در صورتی که ذره مورد نظر آزاد نباشد، در این صورت تحت تاثیر پتانسیلی مانند قرار خواهد داشت که در حالت تک بعدی پتانسیل را با 22dcb209eaed499339201ed7a6f4542dو در حالت سه بعدی با d752c41c2b88cca26ea4902856e9b9e2نشان می‌دهیم و چون بیشتر پتانسیل‌های مهم ، تقارن کروی دارند، لذا بهتر است که بحث را در مختصات کروی انجام دهیم. در این صورت پتانسیل به صورت 8421727e8f2e94eb685d6f5cec72db15خواهد بود. برای بیان معادله شرودینگر در حالت عمومی ‌و در فضای سه بعدی ، تغییرات زیر را در معادله شرودینگر ذره آزاد اعمال می‌کنیم:

·         تابع موج مربوط به ذره را با46b7ccbd145a31f04d58ffb0e1f2b872 نمایش می‌دهیم.

·         مشتق نسبت به مکان را در حالت سه بعدی با نماد \nabla که دل نامیده می‌شود، نشان می‌دهیم.

·    چون ذره آزاد نبوده و تحت تاثیر پتانسیل 8421727e8f2e94eb685d6f5cec72db15قرار دارد، لذا یک جمله به صورت f4f23cd16441e60e47e8ea6b8e60baefبه معادله اضافه می‌کنیم. بنابراین معادله شرودینگر در حالت کلی به صورت زیر در می‌آید:

64fe06993177a42f24607e0d1c1f87dc

 

کاربرد معادله شرودینگر

·    با استفاده از حل معادله شرودینگر مشخصه‌های سیستم از قبیل ترازهای انرژی ، اندازه حرکت خطی و اندازه حرکت زاویه‌ای سیستم مشخص می‌شود.

·    از حل معادله شرودینگر تابع موج منتسب به هر سیستم فیزیکی بدست می‌آید. با استفاده از تابع موج می‌توان چگالی احتمال را محاسبه نموده و حرکت ذرات سیستم را مورد بررسی قرار داد.

·         برای هر سیستم معادله شرودینگر مخصوصی وجود دارد که وابسته به هامیلتونی تعریف شده برای آن سیستم است .

انرژی یونش

انرژی لازم برای جدا کردن سست‌ترین الکترون از یک اتم منفرد گازی شکل و درحالت پایه یک عنصر را «انرژی اولین یونش» آن عنصر می‌نامند

(A(g) A(g)+ + e(g

نماد (g) نشان دهنده حالت گازی عنصر و یون مربوطه است.

علامت انرژی‌های یونش

در تعیین انرژی‌های یونش عناصر برای بیرون کشیدن الکترون از اتم ، انرژی مصرف می‌شود، زیرا این امر متضمن فائق آمدن بر جاذبه متقابل هسته و الکترون است. پس چون سیستم ، در این فرآیند ، انرژی جذب می‌کند، انرژیهای یونش علامت مثبت دارند. مثلا می‌توان انرژی اولین یونش سدیم را به صورت زیر نمایش داد:

(Na(g) Na(g)+ + e(g


::496Kj+ =
اولین یونش سدیم

img/daneshnameh_up/0/06/ie.jpg

 

 

 

 

 

 

واحد انرژی یونش

انرژی یونش برای هر الکترون منفرد بر حسب الکترون ولت (اتم/ev) و برای یک مول الکترون (6.02x1023 الکترون) که از یک مول اتم (6.02x1023 اتم) عنصر جدا شود، Kj/mol بیان می‌گردد.

ترتیب انرژی یونش در عناصر یک دوره

انرژی یونش در یک دوره از چپ به راست بتدریج افزایش می‌یابد. به آن قسمتهایی از منحنی که به عناصر دوره دوم (از Li تا Ne) ، دوره سوم (ازNa تا Ar) و الی آخر تعلق دارد. توجه کنید که انرژی یونش به این سبب افزایش می‌یابد که اتمها بتدریج کوچکتر می‌شوند و بار مؤثر هسته بتدریج افزایش می‌یابد، در نتیجه جدا کردن الکترون بتدریج دشوارتر می‌شود.

ترتیب انرژی یونش در عناصر یک گروه

در عناصر نماینده ، بطور کلی انرژی یونش بین عناصر یک گروه از بالا به پایین کاهش می‌یابد. عناصر گروه (Cs ، Rb ، K ، Na ، Li) و عناصر گروه صفر (Rn ، Xe ، Kr، Ar، Ne ، He) بصورت مینیمم و ماکسیمم منحنی نشان داده شده‌اند. در هر گروه بتدریج از اتمی به اتم پایینتر می‌رویم ، بار هسته ، افزایش می‌یابد، اما اثر آن تا حد زیادی از طریق افزایش تعداد الکترونهای پوسته زیرین که اثر پوششی دارند، حذف می‌شود. در حالیکه اتمها بزرگتر می‌شوند، الکترونی که باید یونیده شود، در فاصله‌ای دورتر از هسته قرار می‌گیرد، در نتیجه جدا شدن الکترون آسانتر شده ، انرژی یونش کاهش می‌یابد.

انرژی یونش عناصر واسطه در یک دوره به سرعت مشابه با عناصر نماینده افزایش پیدا نمی‌کند. انرژی یونش عناصر واسطه درونی ، کم و بیش ثابت می‌ماند. در این دو دسته عناصر ، الکترون متمایز کننده به پوسته‌های درونی اضافه می‌شود. افزایش اثر پوششی حاصل ، وضعیت انرژی یونش در عناصر واسطه و واسطه درونی را توجیه می‌کند. اتم فلزات در واکنشهای شیمیایی معمولا الکترون از دست می‌دهند و به یونهای مثبت تبدیل می‌شوند. اتم غیرفلزات معمولا به این ترتیب عمل نمی‌کنند. بنابراین فلزات عناصری با انرژی یونش نسبتا کم و غیرفلزات عناصری با انرژی یونش نسبتا زیادند.

انرژی دومین یونش

بحثهای ما تاکنون مربوط به انرژی اولین یونش بوده است. انرژی دومین یونش هر عنصر انرژی لازم برای جدا کردن یک الکترون از یون +1 آن عنصر است.

(A(g) A(g)2+ + e(g

انرژی سومین یونش

انرژی سومین یونش بیان کننده انرژی مورد نیاز برای جدا کردن یک الکترون از یون +2 آن عنصر است. جدا کردن یک الکترون منفی از اتم خنثی طبعا آسانتر از جدا کردن الکترون از ذره دارای یک بار مثبت و آن هم به نوبه خود آسانتر از جدا کردن الکترون از ذره دارای دو بار مثبت است. در نتیجه انرژی سومین یونش بزرکتر از انرژی دومین یونش و آن هم بزرگتر از انرژی اولین یونش است.

انرژی چهارمین یونش و بالاتر

از آنجا که انرژی چهارمین یونش و بالاتر ، به غایت زیاد است، یونهای بالاتر از +3 بندرت در شرایط عادی وجود دارند. همانگونه که انتظار می‌رود برای هر عنصر انرژی یونش از اولین تا چهارمین زیاد می‌شود.

جهش

در تمام مراحل پس ازجدا شدن الکترونهای والانس ، افزایش انرژی مورد نیاز برای یونش بعدی بصورت جهشی است.

واکنش پذیری فلزات

واکنش پذیری فلزات در گوشه پایین سمت چپ جدول تناوبی دیده می‌شوند. واکنش پذیری ، بر حسب از دست دادن الکترون ، بتدریج که از این گوشه به طرف بالا یا به سمت راست حرکت می‌کنیم، کاهش می‌یابد .